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Abstract

A conical Euler code was developed to study unsteady vortex-dominated

flows about rolling, highly swept delta wings undergoing either lotted

motions or flee-to-roll motions that include active roll suppression. The

flow solver of the code involves a multistage, Runge-Kutta time-stepping

scheme that uses a cell-centered, finite-volume, spatial discTrtization of

the Euler equations on an unstructured grid of triangles. The ('ode

allows for the additional analysis of the free-to-roll ease by simultaneously

integrating in time the rigid-body equation of motion with. the governing

flow equations. Results are p_rsented for a delta "wi_g with. a 75 ° swept,

sha_79 leading edge at a fl_e-streant ._laeh rtuntber of 1.2 and at 10 °, 20 °,

and 30 ° angle of attack (_. At the lower angles of attack (10 ° and 20°),

forced-harmonic analyses indicate that the rolling-momcnt cocffi'cicnts

provide a positive damping, which is verified by fire-to-roll calculations.

In contrast, at the higher angle of attack (3t)°), a forced-harmonic analysis

indicates that the rollirtg-ntornent co@_icient provides negative damping at

the small roll amplitudes. A free-to-roll calculation for this case produces

an initially divergent response, but as the amplitude of motion grow._

with time, the response transitions to a wing-rock type of limit cycle

oscillation, which is characteristic of highly swept delta wings. This limit

cycle oscillation may be actively suppressed through the use of a rate-

feedback control law and antisymmetrically deflected leading-edge flaps.

Descriptions of the conical Euler flow solver and the fl_e-to-roll analysis

are included in this report. Results arc presented that demonstTnte how the

systematic analysis of the forced response of the delta wing (:art be used

to predict the stablc., neutrally stable, and unstable free 7rsponse of the

delta wing. These results also give insight into the flow physics associated

with unsteady vortical flows about delta wings undergoing forced ntotions

and free-to-roll motions, including the active suppression of the wing-rock

type phe°aomenon. The conical Euler ntethodology developed i._ dir_'ctly
extendable to three-dimensional calc_tlations.

Introduction

In recent years, the understanding and prediction

of tile complex flows about high-performance aircraft

at high angles of attack have generated much interest

within tile fluid dynamics coimmmity. (See refs. 1

and 2.) These aircraft typically have thin, highly
swept lifting surfaces that produce vortical flow over

the leeward side of the vehicle at high angles of at-
tack. This vortical flow can have beneficial effects,

such as lift augmentation at high angles of attack,

on performance. However, it also may have adverse
effects, such as structural fatigue due to tail buffet

and stability and control problems due to wing rock,

wing drop, nose slice, and pitch-up. (See ref. 3.) Con-

sequently, considerable experimental work has been
done to understand the basic flow physics of vorti-

cal flows about delta wings at high angles of attack.

Experimental research efforts directed toward under-
standing and docmnenting steady vortical flows are

typified by the detailed flow-fieht measurements

about simple-delta, cranked-delta, and canard-delta

wing configurations at low speed (ref. 4) and the

low-speed tests on a 75 ° swept delta wing (ref. 5).
For supersonic" flee-stream Math numl)ers, vortical

flows have been measured by Squire (ref. 6) for an

elliptic cone delta wing and by Miller and Wood

(ref. 7) for a series of swept sharp-leading-edge delta
wings. Experiments to investigate mlsteady vorti-
cal flows for forced harmonic and free-to-roll nlo-

tions of an 80 ° swept delta wing at low speeds have

been reported in reference 8. This wing underwent
self-induced periodic roll oscillations known as "wing

rock" for angles of attack greater than 25 °. Levin and

Katz (ref. 9) tested 76 ° swept and 80 ° SWel)t delta

wings and found that only the 80 ° model exhit)ite(t



wingrockat highanglesof attack. Furtherstudies
havebeenperformedby"JunandNelson(ref.10)and
ArenaandNelson(ref. 11).Thesestudiesshow,for
example,thetime historiesof the vortexcoreposi-
tion duringa cycleof wingrock (ref. 10)and the
staticanddynamiceffectsdueto vortexbreakdown
(ref. 11). Also, reference12containsexperimental
water-tunnelresultsthat showwingrockfor several
deltawingplanformsalongwith detailedflowvisu-
alizationdiagrams.Althoughmuchworkremainsto
be (lone,references4 to 12havecontributedsignifi-
cantlyto theunderstandingof steadyandunsteady
vortex-dominatedflowfields.

From a eolnputationalpoint of view,consider-
ableeffortalsohasbeenspentondevelopingmethods
tbrpredictingsteadyandunsteadyvortex-dominated
flows. (Seerefs.13and 14.) Hoeijmakers(ref. 13)
givesa reviewof computationalmethodsfor the
determinationof steadyvorticalflowcharacteristics
with all emphasison classicalmethodssuchasdis-
cretevortex,cloudin cell,panel,vortexlayerwith
finitecore,leading-edgesuctionanalogy,andvortex
lattice. With respectto unsteadymethods,a non-
linear mathematicalmodel is presentedin refer-
ence 15 for calculatingwing-rockcharacteristics
basedonaerodynamicderivativesthat areevaluated
usingsteady-flowaerodynamics.Wingrockwassim-
ulatedin references16 to 18by usingall unsteady
vortex-latticemethodt.opredict the aerodynamic
loads,andthe equationof rollingmotionwasinte-
gratedby usinga predictor-correctormethod.The
methodsof references15to 18wereusedto predict,
with reasonableaccuracy,tile low-speedwing-rock
characteristicsof the delta wingsstudiedill refer-
ences8 and 9. Useof the moremoderncompu-
tational fluid dynamicstechniquesfor tile predic-
tion of vortex-dominatedflows(ref. 14)hasfocused
primarily on steadyapplications(refs. 19 to 26);
therearenotableexceptionswhereapplicationshave
beenmadeto rollingdelta wingsthat wereunder-
goingforcedharmonic(refs.27to 29)andfree-to-roll
(ref.30)motions.KandilandChuang,for example,
calculatedflowspastrollingdeltawingsbyusingthe
conicalEulerequationsforsharp-leading-edgewings
(ref.27)andtheconicalNavier-Stokesequationsfor
rounded-leading-edgewings(ref.28). In reference29,
resultsfor arollingdeltawingwerecomputedwitha
conicalEulerflowsolveronanunstructuredgrid of
triangles.Themethodsofreference29wereextended
in references30 to 32 to includea fi'ee-to-rollcapa-
bility, andresultsareshownfor afreelyrollingdelta
wingthat exhibiteda limit cycleor wing-rocktype
motionthat is characteristicof highlysweptdelta
wings.Subsequentdelta-wingcalculationsobtained

byusingtheconicalEulerequationsona structured
Ineshalsoexhibitedlimit cycleoscillationsat high
anglesof attack.(Seeref.33.)

Theobjectiveof thecurrentresearchis to study
unsteady,vortex-dominatedflow fieldsby usingthe
conicalEulerequationsasa first stepin investigat-
ing thettlree-dimensionalproblenl.Thepurposeof
thispaperis to reportonthedevelopmentof aconi-
calEuleranalysismethodto studyunsteady,vortex-
dominatedflowsabout rolling delta wingsunder-
goingeitherpulsedmotion,forcedharmonicmotion,
or free-to-rollmotionthat includesactiveroll sup-
pression.DescriptionsoftheconicalEulerflowsolver
andfree-to-rollanalysisareincluded.Theflowsolver
involvesa nmltistage,Runge-Kuttatime-stepping
schemeandacell-centered,finite-vohlme,spatialdis-
cretizationoftheEulerequationsonanunstructured
grid of triangles.Thecodewasmodifiedto include
the simultaneoustimeintegrationof tile rigid-body
equationof nlotionwith tile governingflowequa-
tionsto allowfor theadditionalanalysisof thefree-
to-roll case. The analysisalsoincludesa capabil-
ity for implementinganactivefeedbackcontrollaw
with antisymmetricallydeflectedleading-edgeflaps
forsuppressionof thewing-rockinotion.Linlitedex-
perimentalandnumericalworkhasbeenconducted
on theuseof flaps(refs.34and35)andleading-edge
blowing(refs.36and 37) for roll control. Results
arepresentedhereinfor a 75° swept,sharp-leading-
edgedeltawingat afree-streamMachnunlberof 1.2
and at 10°, 20°, and 30° angleof attack. These
resultsdemonstratehowthe systematicanalysisof
the forcedresponseof the deltawingcanbe used
to predictthe stable,unstable,and neutrallysta-
ble freeresponseof the deltawing. Theseresults
alsogiveinsightintotheflowphysicsassociatedwith
unsteadyvorticalflowsaboutdeltawingsthat are
undergoingforcedmotionsandfree-to-rollmotions,
includingthe activesuppressionof the wing-rock
typephenomenon.
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free-stream speed of sound
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rolling-moment coefficient

transfer function of rolling-moment

coefficient due to flap deflection

transfer function of rolling-moment
coefficient due to roll
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AE
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t/_j?

P

p_c

root chord of wing

total energy

mass moment of inertia about

longitudinal axis

imaginary unit, _-1

control gain

reduced frequency of oscillation
based on half tile root. chord. _.,c

2Ux

rolling moment, positive clockwise
when viewed from aft.

free-stream Mach mmfl)er

fluid pressure

total pressure loss

free-stream dynamic pressure

planform area

transpose operator

dimensional time

nondimensional time.
C

nondimensional time at center of

pulse

contravariant velocities in x, y, and
z directions

free-stream velocity

components of velocity vector in x

#, and z directions

Cartesian coordinates

angle of attack

ratio of specific heats

energy exchange during harmonic
cycle

normalized energy exchange during

harinonie cycle

dimensionalized global time step

nondimensional time step

leading-edge flap deflection angle,

positive clockwise when viewed from
aft

structural damping

density

free-stream density

0 instantaneous roll angle, positive
clockwise when viewed from aft

Oo harmonic and pulse roll-angle

amplitude

aa frequency, radians per second

Primes with symbols indicate differentiation with

respect to nondimensional time.

Governing Equations

The flow is governed by the time-dependent Euler

equations, which may be written in conservation-law
form a_s

0Q 0E OF 0G

O_- + _ + _ + _ =0 (1)

where Q is the vector of conserved variables defincd

by

q = [p. 0,_, p,', p,,,. e] (2)

and E, F, and G are the convective or inviscid fluxes

given by

pU

pUn + p

E = pUv (3a)

pU w

(e + p) U + xtp

pV

pV u

F = pVv + p (3b)

pVw

(e + p) V + ytp

pI,I"

pI.Vu

G = 01,I,'% (3c)

pWw + p

(e + p) IV + ztp

The contravariant velocities U, V, aim W are defined

by

U= u--xt}

V = _,- .t/t (4)

I,V = w- zt

wherc xt, Yt, and zt are the grid spccds in the x,

'g, and z directions, respectively. The pressure p is



determined by the equation of state for a perfect gas
as follows:

Equations (1) to (5) have been nondimensionalized
by' the free-stream density and the free-stream speed
of sound.

If interest is restricted to supersonic flow past con-

ical bodies, the conical-flow assumption that is exact
for steady inviscid supersonic flow can be made. This

assumption reduces the problem fl'om three dimen-

sions to two dimensions, which significantly decreases

the computational resources that are required to in-

vestigate such flows. For unsteady flows, however,
the conical assumption implies instantaneous prop-

agation along radial lines. The following change of

variables is then required:

Y
' =. (6)

X

The three-dimensional Euler equations then reduce
to

OQ o o
07 +07/(F-'JE)+ _(G-(E)+2E=0 (7)

Equation (17) may be rewritten in integral form for
solution as

_£Q d, <+ [[(FaO_). tiE) d( (G (E) d,]]+_Edr/d(={)

(s)

where I2 is the integration area and the second

integral is a boundary integral that results from

application of the divergence theorem.

Solution Algorithm

In this section, an algorithm for the solution of the
unsteady conical Euler equations on an unstructured

mesh of triangles is described. Conceptually, this

spatial discretization reduces to central differencing

on a rectangular mesh.

Spatial Discretization

The conical Euler equations in integral form

(eq. (8)) are solved numerically by using a finite-

volume algorithm developed for analysis with an un-
structured grid that is made up of triangles. The

algorithm is a cell-centered scheme in which the flow

variables are stored at the centroid of each triangle;

the control volumes are the triangular element.s of

the mesh. The boundary integral in equation (8)
is formed by the fluxes E, F, and G evaluated at

the midpoint of each edge of a given triangular el-
ement. The inviscid fluxes at the midpoint at each

edge are evaluated with a cell-centered type of ap-

proach in which the fluxes of two adjacent elements

are averaged across a common edge. For example,
along element edge m-k in figure 1, the contribution

to the boundary integral in equation (8) for element
i is given by

(F,,d,, - rb,,kE,,,k)((,,, - (k) - (Gmk G,,kEmk) ('lm- Ok)

where
(9)

1

rb,tk = _ 07m + _lk) (10a)

1

(ink = -_ ( (m + (k) (lOb)

1 (Ei + Ej) (10c)Emk =

1 (Fi + Fj) (10d)Fmk =

1 (Gi + Gj) (lOe)Gmk =

Artificial Dissipation

Artificial dissipation is added explicitly to pre-

vent oscillations near shock waves and to damp high-
frequency, uncoupled error modes. Specifically, an

adaptive blend of harmonic and biharmonic opera-

tors corresponding to second- and fourth-difference

dissipation, respectively, is used; this blend is similar
to the dissipation described in reference 38. The bi-

harmonic operator provides a background dissipation

to damp high-frequency errors, and the harmonic op-
erator prevents oscillations near shock waves. The

harmonic operator is multiplied by a pressure switch
that is first-order accurate near shocks and second-

order accurate in smooth regions of the flow. The
biharmonic operator is third-order accurate and is

adaptively turned off to prevent overshoots in regions
of shock waves. The harmonic-difference operator

stencil for element i with surrounding neighbors 1,

2, and 3 is shown in figure 2. For elements adjacent

to a boundary, image or "ghost" cells are used to
complete the stencil shown in figure 2. The values

of the conserved variables associated with the image

cells are determined by the type of boundary that the



sharededgerepresents.If the boundaryis a solid
wall, then the normalandtangentialvelocitiesare
setin tile imagecellsothat a fi'ee-to-slipcondition
is imposedon the boundaryedge.Specifically,the
normalw_locityin the imagecell is setoppositeto
that of theadjacentinteriorcell;tangentialvelocity
is simplynlirrored,sothat whenthe velocitiesare
averagedacrosstheboundaryedge,a flowtangency
conditionis enforced.Thepressureanddensityare
reflectedinto tile imagecellssuchthat a zeronor-
realderivativeis imposedontheboundaryedge.If a
cell isadjacentto afar-fiehtboundary,thenthecon-
servedvariablesin theadjacentimagecellaresetto
free-streamconditions.Thisboundaryconditionre-
quiresthat thebowshockbecapturedwithin thein-
teriorofthecomputationaldonlain.Thebiharmonic
operatorfor an elementis COmlmtedwith second-
differencetermsfronltheharmonicoperators.Along
theboundaries,thesecond-difference,termin theim-
agecell issimplyset.equalto its vahrein theparent
cell,sothat noadditionalghostcellsarerequiredat
theboundaries.

Boundary Conditions

Theboundaryconditionsareenforcedby speci-
fyingtile fluxesalongboundaryedgesh)r use in tile
evaluation of the boundary integral in equation (9).

For those edges along the far-field boundary, free-
stream conditions are applie<t with the assumption

that the bow shock is captured. To impose a no-flow-

through boundary along tile surface of tile body, tile
boundary integral in equation (8) is first, rewritten in
terms of the flux velocity defined by

(V - 71U) A( - (I,V - (U) A, 1 (11)

For edges along the solid boundary, this flux velocity,

which is proportional to the velocity normal to the

edge, is then set equal to zero. The pressure terms
along the solid boundary edge are evaluat:ed in the

boundary integral with the cell-center values.

Time Integration

Tile conical Euler equations are integrated in time

by assuming that the conserved variables represented
by Q are constant within a control volmne which

yiehts

d

d_ (AiQi) + C (Qi) - D(Qi) = 0 (12)

where C and D are the convective and dissipative

operators, respectively, and Ai is the area surround-

ing element i. These equations are integrated in time

by using an explicit four-stage. I/unge-Kutta, tiine-

stepping scheme given l) 3'

Ql0)

Qt,/= Q,, /,1 A"- 1

.4 u Q(()} 1 .._, [(? (Q{ 1)) 1) (Q(,,:I) ]
3 ,4" + 1

Q(a) = .4" ol0} 1 At [(,(Q(2)) I)(Q(t,))]
,4.+1 _ :_ A.+I

A,+ 1 Q(I_) A"+_

Qn+l = Q(1)

(13)

where At is the global time step and the superscript

n represents the value at the tinle level 7_. In tiffs

scheme, the convective operator is evaluated at each

stage', for computational efficiency, tire dissipative

operator is evahlatcd only at the first stage. The
Runge-Kutta scheme represented by equations (13)
is second-order accurate in time and includes the

necessary terms t,o account for changes in cell areas
as tire result of a nloving or deforming mesh.

Implicit Residual Smoothing

Tile explicit time-integration schenle described in

the preceding section has a step size that is lim-

ited by the Courant-Friedrichs-Lewy (CFL) condi-

tion corresponding to a CFL number t)f 2v_. To

accelerate convergence to the steady state, the CFL

number nmy be increasett by averaging the residual

Ri with values at neighboring elements. This resid-

ual averaging is accomplished by replacing Ri with
the smoothed residual R i given t)y

R, -- eV2Ki = Ri (14)

where _ is a constant that controls the anlount of

smoothing and V 2 is an undivided Laplacian oper-

ator. These implicit equations are solved approxi-

mately by using several Jacobi iterations similar to
those in references 38 and 39.

For steady-state calculations, corrvergence is fur-
ther accelerated by using enthalpy damping (ref. 40)

and local time stepping. The local time stepping uses
the maximmn allowable step size at each grid point

a_s determined by a local stability analysis. For un-

steady applications, however, a global tinle step must
bc used because of the time-accuracy requirelnent.

By using a time-accurate version of equation (14)
similar to that of reference 41, the maxirnmn allow-

able global time step may be increased to a vahm

5



that is largerthan that dictatedby theCFL condi-
tion. In thisprocedure,theconstant_ isreplacedby
a parameterdefinedby

(15)

whichvariesfromgrid point to gridpoint. In equa-
tion (15),At is thetimesteptakenandAtCF L is the

locally allowable time step for the four-stage Runge-
Kutta time-stepping scheme.

Deforming-Mesh Algorithm

The defl)nning-mesh algorithm, as developed in

reference 42, models the triangular mesh as a spring

network in which each edge of a triangle represents
a spring with stiffness inversely proportional to the

square of its length. In this method, the grid points

along the outer boundary are held fixed, and the

grid points along the wing (inner boundary) are
specified. The locations of the interior points are

then determined by solving the static equilibrium
equations, which result from a summation of forces

at each node in the rI and ( directions. The solution

of the equilibrium equations is carried out by using

a predietor-corrector method that first predicts the
new locations of the interior points by extrapolation

from the previous time levels and then corrects these

locations by using several Jacobi iterations of tile

static equilibrium equations. The predictor-corrector

procedure is relatively efficient, since it requires only
a few Jacobi iterations to adequately move the mesh.

Pulse Transfer-Function Analysis

Generally, unsteady load coefficients can be ob-

tained by calculating several cycles of a forced-

harmonic oscillation and using the last cycle of os-
cillation to determine the load. This process requires
one flow-field calculation for each value of reduced

frequency of interest. In contrast, the unsteady load
coefficients may be determined for a wide range of

reduced frequency in a single flow-field calculation

by using the pulse transfer-function analysis. The
pulse transfer-function analysis has been used pre-

viously to determine the generalized aerodynamic

forces (GAF), which are used in aeroelastie analyses.

(See rcfs. 43 and 44.) In the pulse analysis, the un-

steady load coefficient is computed indirectly from
the response of the flow field as a result of motion

that is represented by a smoothly varying, exponen-

tially shaped pulse. Results computed by using the
pulse analysis for a pitching flat-plate airfoil were in

good agreement with parallel linear-theory calcula-

tions. (See ref. 44.) Reference 44 also shows that

the GAF airfoils at transonic speeds that were com-

puted from a pulse analysis were in good agreement

with the GAF values that were computed by using
the harmonic method, which tends to verify that the

analysis is valid for predicting the snmll perturbation
response about a nonlinear flow field. These calcula-

tions verify the accuracy of the pulse analysis. There-
fore, because of the computational efficiency of the

pulse transfer-flmction analysis, the capability was
implemented within the conical Euler code to calcu-

late tile rolling-moment coefficient due to roll Clo of
a delta wing. The pulse in roll angle is expressed as

¢(t)=_oexp[-M2(t-tc) 2] (16)

where ¢o is the pulse amplitude, M_c is the free-
stream Mach number, which determines the width

of the pulse, and tc is the nondimensional time at

the center of the pulse. While a small pulse in
roll angle is prescribed for tile delta wing, the aero-

dynamic transient is calculated. By using a transfer-
flmction analysis, this aerodynamic transient is then

used to obtain the rolling-moment coefficient in the

frequency domain. In this case, a fast Fourier trans-
form (FFT) of the rolling-moment coefficient is di-

vided by an FFT of the pulsed rolling motion to ob-

tain the vahle of Clo. Tile transform assumes that
the system is locally linear. Additional work not re-

ported in this study has shown this assumption to be
valid for the pulse amplitude of 1° used ill the present
study.

Forced-Harmonic Analysis

Because the pulse analysis is limited to small

perturbations, the large-perturbation aerodynamic

response characteristics of the rolling delta wing are

determined using a forced-harmonic analysis. The
forced-harmonic rolling motion can be expressed as

¢ (t) = 0o sin (kt) (17)

where ¢o is now the roll amplitude, k is the reduced

frequency of oscillation (based on half the wing root
chord), and t is tile nondimensional time. Since

the linear techniques are no longer applicable, the
concept of energy transferred to the system can

be used in this analysis to determine the stability

characteristics. A similar technique was applied

experimentally in reference 8 for the analysis of wing-
rock aerodynamics. During 1 cycle of harmonic

motion, the total aerodynamic energy added to tile
system is

de (is)AE
J



where AE is a nondimensional energy and C/ is the

rolling-moment coefficient. If AE > 0, then the aero-

dynamic forces are adding energy to the wing, which
would have a destabilizing effect on tile free-to-roll

response. If AE < 0, then the aerodynamic forces

are extracting energy from the wing, which would

have a stabilizing effect on the free-to-roll response.

Equation (18) indicates that for the rolling-moment
coefficient versus roll-angle response, which traces a

clockwise loop during 1 cycle of motion, the energy

exchange is positive during the cycle. Similarly, for a

counterclockwise loop, the energy exchange is nega,
tive. If multiple loops are formed, then AE is a total

of the individual loops.

Free-to-Roll Analysis

Roll Equation of Motion

The equation of motion for a roiling delta wing

can be expressed as

I r_.0 = l - #x0 (19)

where _0 is the roll angle which is positive clockwise

when viewed from aft, Ixz is the mass moment of

inertia about the longitudinal axis, 1 is the aero-

dynamic rolling moment, also positive clockwise, and

#x is a structural damping term. (Dots over symbols
indicate differentiation with respect to time.) To

nondimensionalize equation (19), the angular rates

are multiplied by the root chord of the delta wing c

and divided by the free-stream speed of sound a_c..

The rolling-moment coefficient is defined as

1

q,_ ,_c

where q_c is the free-stream dynamic pressure and

S is the planform area. The nondimensional rolling

equation of motion carl then t)e written as

0" = C_Q - C20' (21)

vchere

312,Sc3 pac
C1 - " (22a)

2I r.r

# ,_c (22b)
C2 = a:_:I, rz

The structural damping term is added to simulate the

damping that might be providc(l by a sting-balance

bearing mount. This type of bearing mount was used

in the low-speed wind-tunnel investigations of wing

rock reported in references 8 to 11.

Time-Marching Solution

The solution procedure fi)r the time integration

of equation (21) is based on a finite-difference repre-
sentation of the time derivatives. The time deriva-

tives are expressed in t.erms of second-order-accurate

finite-difference approximations. After substituting

these expressions into equation (21), the roll angle at
time level n + 1 can be expressed in terms of the roll

angle at previous time levels as

C1C]'+IAt 2 + (5 + 2C2At) 0 '_
0,t+l

_C2At + 2

(-4- 1C2At) 0"-' + 0 ''-2
(23)

+ _C2At + 2

The rolling molnent C[ t+l at time level n + 1 is esti-
mated from a linear extrapolation of CI at the pre-

vious two time levels. This predicted value of C I
is used to determine the roll angle 0 _t+l at time

level n + 1. The flow field about the wing at this

roll angle is then calculated, and the actual vahle of
the rolling-moment coefficient is deternfined. The

rolling-moment coefficient is then updated for use

in the next time st.ep. Beca.use of the explicit
time marching of the Euler code used in this study,

the time steps required for numerical stability were

small approximately 6500 time steps per cycle of

motion. Thus, it was not necessary to iterate between

tile roll angle calculation arid the flow-field calcula-
tion at. each time step. For a free-to-roll calculation.

steady-state initial conditions are specified for O -1,

OII, CI 1, and CI _. At t ='(), an angular wqocity
pert.urbation is applied to the wing.

Active Roll Suppression

Active roll suppression is achieved through the
addition of an active rate-feedback control law to the

time-nmrching solution procedure. A simple control
law was chosen of the form

6 = Kv0' (24)

where K_, is the control gain and the values of b

are tile left and right leading-edge flap (teflection an-

gles measured positive ch)ckwise from the flap hinge
lines. The control law is at)plied to tile left and

right flaps simultaneously, which results in an anti-
symmetric configuration. The time-nlarching solu-

tion procedure is the same as that (tescribed in the

preceding section. However, after tile roll angle at
time level n+ 1 is determined from equation (23), the

flap deflection angle is determined froin equation (24)

7



byusinga second-order-ac('uratefinite-differenceex-
pressionfor theangularvelocityJ. Tiledeforming
meshalgorittunis thenapplied,ill additionto tile
rigid rotation,to movethe meshto its newposi-
tion. As before,the flow field is calculatedabout
thewingat its newposition,andtherolling-monlent
coefficientis determinedandupdatedfur usein the
nexttimestep.Thesatneinitialconditions described

in the preceding section are applied to begin the
calculation.

Results and Discussion

Calculations were perfornled for a 75 ° swept delta

wing at a free-stream Math numl)er of 1.2 and at

_ = 10 °, 20 °, and 30 °. Tile wing h_s thickness an(t

sharp leading edges as indicated in the partial view

of the grid shown in figure 3. The thickness-to-span
ratio at this (:ross section is 0.025. and the lower-edge

bevel angle is 10 ° . The grid, which was generated

by using an advancing front method (ref. 45), has
a total of 4226 nodes and 8299 (qements. Tile grid

was designed to be fine on the leeward side of tile

wing, where tile donlinant flow features are expected

t() occur. As discussed previously, the mesh is rotated

as a rigid body ibr unsteady applications to conform
to the instantaneous t)osition of tile main part. of the

wing. The mesh is deformed locally near the leading

edges to (:onform to the instantaneous position of the
flaps. As examples of mesh movelnent, partial views

of the left leading-edge flat) at a t)ositive (5 = 10°)

and a negative (t5 = -10 °) flap defloetion angle are

shown in figures 4(a) and 4(b), respectively, with
tile wing rotated through 10° of' motion. Tile hinge

t)oint of tile flap coincides with the int)oard bevel

edge on the lower surface; the flap length is therefore

approximately 28 percent of the senlispan. As shown
in the figure, the mesh moves smoothly as the wing

rolls and as the flaps are deflected.

Steady an(t unsteady results, including the pulse,
tbrced-harmonie, and free-to-roll (:alculations, are

t)resente(t for (_ = 10 °, 20 ° , and 30 ° . The rate-

feedback control law is at)t)lied to tile a = 3()° case,

since it is tile only free-to-roll case to exhibit a wing-
rock behavior.

Steady-State Results

Stea(ty-state results were obtained to determine

the basic character of tile vortical flows and to pro-
vide starting solutions for the nnstea(ty cases. A com-

parison of total pressure loss contours from these so-

lutions (fig. 5) illustrates the effeets of angle of attack.

For the (_ - 10 ° ease (fig. 5(a)), the contours indieate

that the flow separates from each of the leading edges

of the wing, which produces two small, widely spaced

circular vortices. At (t = 20 ° (fig. 5(b)), the contours

indicate that tile vortices are now larger than for the
c_ = 10 ° case. The flow accelerating beneath the vor-

tices at this increased angle of attack also produces

two vertically oriented crossflow shock waves on the

outboard portions of the wing. For the _ = 30 ° case

(fig. 5(el), the contours indicate that the flow sep-

arating from the leading edges t)ro(tuees two large,
more closely spaced vortices. Also, as the flow ac-

celerates beneath the vortices (fig. 5(c)), vertically
oriented crossflow shock waves are formed on the out-

board portions of the wing. Weaker shock waves are
formed oi1 tile top of each vortex. These vertically
oriented shocks are located above the core of the vor-

tex. A weaker horizontal shock wave is also t)reseut
t)etween the vortices.

Pulse Transfer-Function Results

The pulse transfer-function analysis was per-

forme(t to determine the small amplitu(te stability
and response characteristics of tile wing. A sta-

bility analysis was (teriw'd by first recalling the

nondimensional rolling equation of motion given by

0" = C1CI -- C20' (21)

For simplicity, the structural da.mping term C2 is set

equal to zero, which results in

o" - (25)

Assuming that the rolling-nlontent coefficient can

be written as tile product of the rolling-moment-

coefficient transfer fimction (),:, and tile roll angle O,
then

= q,:0 (26)

Then, for simt)le harmonic motion,

ct = + iIm(Q)]0 (27)

where F/e(C/_,_) and hn(Ch,,) represent tile real and

imaginary parts of the first harmonic component of

Clo. In this case, the real part of the rolling-moment-
coefficient transfer fimction represents an aero-

dynamic stiffness, and the imaginary part. represents

an aerodynamic danlping. Therefore, for this sim-

ple one-degree-of-freedom case, the sign of Im(C/o )
determines the stability in roll of the wing for small

perturl)ations. In other words, a negative value of

Ira(C/0 ) indicates a positive aerodynamic (tamping,
which would cause a free-to-roll wing to be stable;

a positive Im(C/o ) indicates a negative aerodynainic

damping, which would cause a free-to-roll wing to be
unstat)le.



Thepulsetransfer-functionanalysisisusedto de-
terminethe force-coefficienttransferfimetion,and
thereforethestabilityofl.hewing,forawiderangeof
reducedfrequencyk. The nondimensional time stet)

used in these analyses was At. = 0.0(}4, which results

in a frequency resolution of A/_" = 0.1. A c(mq)arison
of results from the pulse t.ransfer-fimelion analysis

(fig. 6) indicat.es the effects of angle of attack. A max-
imum pulse amI)lit.ude of 1° was used at, each angle
of a.ttack, ttowever, at. (t 20 °, an additional pulse

amplitude of -1 ° was also considered for reasons ex-

plained below. At (_ = 10° (fig. 6(a)), Ira(C/.,) is

negative for all values of reduced frequency, which is

indicative of stability in roll for small perturbations.

At ,,: 20 ° (fig. 6(b)), Im(Cl,.) is also negative over

all values of reduced frequency fiw both pulse angles.

However, the absolute value of Im(C!c ,) for each vahle
of /," is smaller for _: = 20 ° results than for r_: = 1(1°

results; thus, the aerodynamic damping should be
lower at (t = 20 °. In contrast, at. c}: 30 ° (Jig. 6(c)),

the imagilmI'y part is positive for k <_ 0.5. which is

indicative of instability in roll. Also. the Fle(Clo )

is negative for ¢_:= 30 ° in this range of reduced fre-

quency, which corresponds to a positive aerodynanfic
stiffness. The roll response will therefore ()scillate

(with increasing amplitude) rather than give rise t.o

a static instability known as wing drop.

The accuracy of the pulse analysis is verified by

harmonic analyses performed at five wflues of re-

duced frequency: k = 0.0, 0.25, 0.50, 0.75, and 1.0.
In these analyses, the wing was oscillated harmoni-

cally in roll with an amplitude of 1° fl)r thret_ cycles

of motion; the rolling-moment coefficient was deter-
mined from the last cycle. Tile nondimensional time

step used in all cases wa.s 0.00262, which corresponds

to 2600 steps per cycle for tire k = I).25 cases and

650 steps per cyelK for the k = 1.0 eases. The re-
suits of the lmrmonie analyses are eontt)are(t with the

r()lling-monmnt-eoefficient transfer functions shown

in figure 6. The agreement between Imlse and har-

monic analyses is very good for (_ = 10 ° and 30 °. For
a = 20 °, the harmonic results lie between tile pulse

results for 0o = 1° and 0, - -1°- Because of the ini-

t,ial symmetry of the steady-state eonfigurat, ion, t.he

pulse results should be independent of the sign of the

pulse amplitude. However, flow-field asymmetries as-
sociated with tile asymmetric mesh cause ,'.-;()lllebias

in the tmlse-analysis results at this angle of attaek

that ark not t)resent in the harnlonic analyses, be-
cause the harmonic analyses involve oscillations be-

tween 0 = ±1°. This symmetric motion effectively

compensates for the flow-field asymmetries.

Forced-Harmonic Results

Be('ause the pulse transfl'r-fun('li(m amdysis is

limited to small perturl)at ions, the large-perturl)ati(Tn

aer(Tdymunie charaeteristi(:s ()f the della wing wet('

investigated with forced-harm(Tnic (Ts('illati(Tns. M(7-
t i(ms at a reduce(t fl'e(ltten('y ()f L' -- 0.25 were ('hos('n

for this analysis. This value lies at the midI)oint of

the range (Tf re(hlee(t t¥(,quency that is itlemifi('(t I_y

the pulse analysis as being an unslalTl(, ('(mttiti/m for
the fre(,-t(7-r(Tll wing at r_ - 30 °. Three amt)litu(l('s ()f
moti(m 0o -- 5°. 15°. and 35 ° wer(' ('onsi(lere(t at

_ - 10°, 20 °, and 30 °. The n(Tn(tinl(msi(Tnal time step

use(t for all eases was 0.002(i2. which e(Trr('sl)on(ts t(7

,1()()0 steps per cyeh _ (Tf harmoni(' motion. A ('ompari-

son of rolling-monwnt c(7(qti('ient versus roll angle for
each ()f these eases is shown in tigure? t() illustrate

the effeet,_ of roll amplit.ude and angle (Tf alt ack. For

¢t -- 10 ° (fig. ?(a)). t.he results in(li('ate a e(Tmlter-

ehT(:kwise loop for each roll amplitud(', which w(mht

pr(7(hlce a convergent (stable) resp(Tnse if" the wing
were fl'ee t(7 roll. This pr(,(ti(qion of a st,able r(,sp(mse

at the mnallest roll amplitude is ('onsistem with the

pulse transfer-fimction results in tigure (i(a). Also,

its the roll amplitude is increase(t fr(Tnl 5° t(7 15°. the
maximmn rolling-m(Tment c(Teitiei(u_t it_('re'ases lin-

early. (Note the change in scaling ()t" the v('rli('al

and horizontal axes.) th)wever, as Ill(' roll amt)li-
t ll(le is further increased t,o 35 °, some nonlinear aero-

dynamic characteristics are exhibited in the "pinch-
ing'" (Tf tim hTop at the extreme roll angles: h(Tw(wer.

the free-to-r(711 response is st ill pre(li('le(t 1o t7(, sial)l(,.

Similarly, for _ - 20 ° (fig. 7(1))). the results show a
c(/unt.er(q()ekwise loop (AE < 0) t"(71"ea('h r()ll aml)li-

tu(le, which also would l)ro(luc(' a stabl(, r(,slT(mse if"

th(' wing were free to roll. This ITredit'titm (7t'a stable

response at the smallest roll amt)lit u(h'. which would
t)e more lightly (tanq)e(l than for (_ 10 °, is also ('(re-

sistent with the pulse transfer-fmwtit/n results ()f ti_-

m'e (3(t)). Fk)r ¢_= 30 °(tig. ?(c)). the r('sults in(li('ate

clockwise loops for the 5° and 15 Q r(Tll amplitudes,
which would produce a divergent (unst at)h') r(':.-;[)(Tnse

if the wing were free 1(7 roll. This tTredi('tion of an

unslat)le, fi-ee-to-roll resp(mse at the smalh'r roll am-

t)litn(ie,s is e(Tnsistent with the pulse transf('r-fmwtitm
results of tigure 6(c). For O, - 35 °, ('(mtlter('lo('kwis( _

loops have formed at, the extreme roll angles whi('h,

consequently, would have a stabilizing eii'e('l (m the

free-to-roll response. The formati(m (Tfthes(, stM)iliz-

ing 1(7(7t)s was not, (Tf et)urse, l)re(li('te(t t)v the pulse
analysis. In contrast, 1(7 tilt' (t = 10 ° and 20 ° cases,

the nonlinear aero(lymmfi(' ('ffecls at the larger roll

amplitudes for (_. = 30 ° result in a ('hang(' in the
st,at)ilikv characteristics of t,he wing.



The total aerodynamicenergyexchangeduring
a cycleof motion,as describedin equation(18),
wascalculatedfor eachroll amplitude.Thesenon-
(timensionalenergyvalueswerethennormalizedby
a factorof 02AE30,where0o is the roll amplitude

during tile cycle (ill degrees) and AEa0 is the energy

exchange value for rt = 30 ° and 0o = 1°. The

nornmlized energy exchange during the cycle can
thus be expressed as

AE
zXE = (28)

02AE30

Plots of AE versus 0o at each angle of attack arc

shown illfigure8. Additional resultsfor the rollam-

plitudes of 1°,30°,and 45° are inchlded in figure8.

Ifthe aerodynamic effectswere linearover the range

of roll amplitudes, then the curve of AE versus 0o
for _t = 30 ° should be a horizontal line at AE = 1.

Similarly, the curves for a = 10° and 20 ° should be
horizontal lines at their respective normalized energy

exchange values for 0o = 1° if the system was lin-
ear. For (_ = 10 ° and 20 °, the near-horizontal lines

shown in figure 8 indicate that tile aerodynanfie ef-
fects are nearly linear with respect to roll amplitude.

For (t = 30 °, nonlinear effects are indicated in figure 8

at the larger roll amplitudes, which would result in a

change ill tile stability characteristics of the free-to-
roll wing. A neutrally stable condition (AE = 0) or

limit cycle oscillation is predicted at approximately

0o = 36 ° for this reduced frequency.

The unsteady vortex dynamics during a harmonic
cycle call be illustrated by the changes in the cross-

flow contours during the cycle. Crossflow total-
pressure-loss contours from the c_ = 30 ° forced-

harmonic cases at 0o = 5° and 35 ° are shown in

figure 9. The instantaneous crossflow contours are

shown at four points in time that correspond to the
0 ° (1), 90 ° (2), 180 ° (3), and 270 ° (4) cycle posi-

tions. For 0o = 5° (fig. 9(a)), the contours show only

a slight, variation in the vortex strength and location

during the cycle. However for 0o = 35 ° (fig. 9(b)),

the contours indicate that the vortex strength and
location change significantly during the cycle. Fig-

ure 9(b) shows that as the left leading edge moves

through zero roll angle (position 1) and continues
to the nmximum position (position 2), the left vor-

tex weakens and lifts off the wing, while the right

vortex strengthens and moves inboard. Similarly, as

the right leading edge moves through zero roll angle

(position 3) to the maximum position (position 4),
the right vortex weakens and lifts off the wing, while

the left vortex strengthens, reattaches, and moves
inboard. This vortex lift-off and reattachment is be-

lieved to be the source of the nonlinear variation

10

of the rolling-moment coefficient shown in figun.s 7
and 8.

Free-to-Roll Results

The free-to-roll results were obtained for tile flow

conditions and structural and inertial parameter val-
ues listed in table 1. The structural and inertial

Table 1. Summary of Structural Parameter Values and
Flow Conditions for Free-to-lloll Calculation

C, IIl ...................... 0.282

I_._, kg-m 2 ............... (}.1776 x 10 a

p j:, kg-m2/sec ................... 0

p_c, kg/m a ................... 0.526

a:_, m/see .................... 312

properties used in these calculations are loosely based
on the characteristics of the models used in the ex-

perimental study of wing rock in reference 9. The

initial nondimensional angular velocity imposed on

the wing was 0.003, and the nondimensional time

step was 0.004. The resulting roll-angle response
for the _ = 10 ° case (fig. 10(a)) indicates that, af-

ter the initial perturbation, the oscillatory response

converges to its initial steady-state value. This sta-
ble free-to-roll response is consistent with the pulse

and forced-harmonic results presented in figures 6(a)
and 7(a). Similarly, the resulting roll-angle response

for a = 20 ° (fig. 10(b)) also shows a stable, con-

verging response that is consistent with the pulse

and forced-harmonic results of figures 6(b) and 7(b).
Also, as predicted by the pulse and harmonic analy-

ses, tile response at c_ = 20 ° is more lightly damped

than the response at a = 10 ° . The roll-angle re-
sponse for a = 30 ° (fig. 10(c)) indicates that the

oscillatory response initially diverges for small val-
ues of roll angle, which is consistent with the small

amplitude pulse and harmonic results of figures 6(c)
and 7(c). As the roll angle increases to around 35 °,

the rate of divergence decreases because of the sta-

bilizing aerodynamics (counterclockwise loops in the

rolling-moment coefficient at the extreme roll angles)
shown in figure 7(c). Finally, the response reaches

a maximum amplitude of motion at approximately
0 = 38°; this response corresponds to a limit cycle

oscillation. The reduced frequency of the limit cycle
is 0.103.

In the low-speed experimental investigation of

wing rock conducted by Arena and Nelson (ref. 11),
the wing-rock time history of an 80 ° swept delta

wing at 30 ° angle of attack exhibited a symmet-
ric growth of the maximum roll angle which, at the

larger roll amplitudes, transitioned to a limit cycle



oscillationat k = 0.125. During the wing-rock Iil()-
tion, no vortex burst was observed above the config-

uration. For the high-speed calculations perfornmd

in this study, the wing-rock time history exhibited a

sinfilar syminetric growth and transition. However,
the structured-grid, conical Euler calculation from
reference 33 for an 80 ° swept delta wing at a free-

stream Mach number of 1.2 and 35 ° angle of attack

indicated all a.ntisymmetric growth of the maxinmm

roll amplitude that transitioned to a limit cycle os-
cillation about a mean roll angle of -5 °.

Similar to the forced-harmonic results shown in

figure 9, the unsteady vortex dynanfics during the

wing-rock cycle are illustrated in figure 11 by tile

changes ill the crossflow total-pressure-loss contours

during the cycle. The instantaneous crossflow con-
tours are shown at four points in time during the

wing-rock cycle, these points correspond to the

0° (1), 90 ° (2), 180 ° (3), and 270 ° (4) cycle posi-
tions. Figure 11 shows that, similar to the results

shown in figure 9(b), as the left leading edge moves

through zero roll angle (position 1) and contiimes to

the maximum position (position 2), the left. vortex
weakens and lifts off the wing and the right vortex

strengthens and moves inboard. As the right leading

edge moves up to its maximum position (position 4),

tile right vortex weakens aim lifts off the wing and

the left vortex strengthens, reattaches, and moves
inboard. The similarities between the results of fig-

ure 9(b) and figure 11 lead to the conjecture that
the vortex lift-off and reattachment are the sources

of the change in aerodynanfic damping that stabi-

lizes the wing response; thus, a limit cycle oscillation

is produced. Howeww, the details of tile fluid mech-
anisms that produce the wing rock are still under

investigation.

It is important to address two of the major lira-

itations of tile conical Euler equations. The first of
these is that the conical Euler equations cannot pre-

dict tile formation of secondary vortices. However,
it is shown in reference 24 that for steady flow, the

Euler equations accurately model the primary vortex

for a sharp-edge delta wing. The second limitation
of the conical Euler equations is that these equations

cannot predict the tinle lag in the radial directions. It
was previously noted that the unsteady conical Euler

equations assume instantaneous propagation of dis-
turbanccs ill the radial directions. However, as the
free-stream Mach number increases and the reduced

frequency of oscillation decreases, this approximation

improves. Although the cases presented in this work
are not for extremely high Mach numbers, the re-

duced frequency of oscillation is low. For example, at

a reduced frequency of 0.103, the phase shift from the

apex to the trailing edge is approximately 7°. The

effects of this phase lag cannot at this t.ime be accu-

rately quantified. However, if an analogy is nmde be-
tween tile conical calculations and the computational
work (tone on two-dimensional airfoils, then the con-

ical results can be thought of in terms of crossflow

sectional properties of the delta wing. These coni-
cal studies can then predict qualitative information

about the sectional properties of tile delta wing at dif-

ferent flow conditions, which can give insight and di-

rection to subsequent three-dimensional calculations.

Also, as in this study, tile conical equations can act as
an efficient test-bed for developing analysis methods

that can be directly extended to t.hrec-dinlensional
calculations.

Active Roll-Suppression Results

An active rate-feedback control law was imple-

nlented in all attempt to suppress the wing-rock mo-

tion. To determine an appropriate value for the gain,

a stability analysis was derived by again using the
nondimensional rolling equation of nlotion given t)y

0 l! = C1Ci (25)

Assuming that. the rolling-moment coefficient can be

written as the superposition of the rolling-inonmnt-
coefficient transfer functions for 0 and (5, then

CI = CI,:,O + Club (29)

Substituting the control taw from equation (24) into

equation (29) gives

Ci = Clo O + CI_ K,,O ' (a0)

Then, for sinlple harmonic motion,

CI = {[Re(CI o) - kMxK,, Im(Cl_)] I

I+ i[Im(Cio ) + kMx K,. Re(C/_ )]}

(31)

As before, the first, ternl on the right-hand side

of equation (31) represents an aerodynamic stiff-

ness, and the second term represents an aero-

dynamic damping. Therefore, stabilizing the inotion
of the wing requires that the aerodynamic (tamping

be positive, or that

Im(C/o ) + kM_K,. Re(CI_) < 0 (32)

Solving for the gain yields

-1 lIn(CI O)
K,, > (33)

k?J:_ Re(CI_ )
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A pulse analysis was performed to determine tile

rolling-monmnt-coefficient transfer flmction for (5 at

_ = 30 ° (Pulse amplitude = 1°). The transfer flmc-

ti¢m fi'om this analysis (fig. 12) indicates that for

values of roduced frequency less than 0.5, the real

part of Cl_ is negative. Considering equation (33)
and recalling fi'om figure 6(c) that tile values of

Im(Cl,_) for k < 0.5 are positive, the vahle of K,,

llnlst lie positive to suppress wing rock. The value

of K_, actually needs to be greater than that de-

termined t)y evaluating the right-hand side of (_(llla -

tion (33) t.o sta.1)ilize the wing, since the preceding

analysis assumes simple harmonic motion. For the

flow conditions considered herein, the value for the

gain that produces a neutrally stable (or simtlle har-

monic) response is K, = 0.35. The free-to-roll anal-

ysis with active rate-feedback control was performed

for Kv = 0.25, 0.40. and 0.50. The time histories

of tile wing nlotion are shown in figure 13. As ex-

pected, the time history for K,, = 0.50 (fig. 13(a))
indicates a damped response. Similarly, tile response

for K,, = 0.40 (fig. 13(1))) is also damped, although

at a sInaller rate than for K_, = 0.50. The response of

the wing for K,, = 0.25 (fig. 13(c)) indicates that the

response is no longer damped. However, a compar-

ison with tile results of figure 10(c) (K,, = 0) shows

that the active rate-feedback control reduces the

growth rate of the response. The maxinmm flap de-

flection commanded by the control law during these

free-response calculations was in the range of 1° to 2 °.

Concluding Remarks

A conical Euler analysis method was developed

to study unsteady, vortex-doininated flows about

rolling, highly swept delta wings undergoing either

forced motions or free-to-roll motions that include

active roll suppression. The flow solver of the code

involves a multistage, Runge-Kutta t into-stepping

scheme that uses a cell-centered, finite-vohnne, st)a_

tim discretization of the Euler equations on all un-

structured grid of triangles. The code allows for the

additional analysis of tile free-to-roll case by simulta-

neously integrating in time the rigid-body equation

of motion with the governing flow equations. Results

are presented for a delta wing with a 75 ° swept, sharp

leading edge at. a free-stream Math number of 1.2

and at 10 °, 20 °, and 30 ° angle of attack (_. At the

lower angles of attack ( 10 ° and 20°), R)rced-harmonic

analyses indicate that the rolling-monlent coefficients

l)rovide a positive damping, which is verified by free-

to-roll calculations. In contrast, at the higher angle

of attack (30°), a forced-harmonic analysis indicates

that the rolling-monlent coefficient provides negative

damping at the small roll amplitudes. A free-to-roll
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calculation for this case produces an initially diver-

gent response, but as the amplitude of motion grows

with time, the response transitions to a wing-rock

type of linfit cycle oscillation, which is characteris-

tic of highly swept delta wings. The wing-rock mo-

tion was subsequently suppressed, however, by the

use of an active rate-feedback control law and anti-

symmetrically deflected leading-edge flaps. The

methodology developed is directly extendable to

t hree-dimensional calculations.
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Figure 1. Example of a central-difference type of differencing approach.
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Figure 2. Difference stencil for harmonic operat, or.
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Figure3. Partialviewof unstructuredgrid about75° sweptdeltawing.
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(a) _ 10°.

(b) _ = - 10°.

Figure4. Partialvi(_wof dcfl_rmingmeshaboutdeflect¢_d1c,ading-(,dg¢_flap.

17



(a) r_= 10°.

0.04 < Pt < 0.56
Apt = 0.04

(b) _ = 20°.

_ 0.04 _<Pt -<0.76

Pt = 0.O4

rv

(c) c, = 30°.

Figure 5. Effects of angle of attack on steady-state total-pressure-loss contours for a 75° swept delta wing atM_ = 1.2. '_
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FiguI'e 6. Effects of angle of attack on rolling-nlont(mt-co(_ffici(mt t ransflw fim(:lion v(,rsus r(,(hw('d fr(,(tu('n('y
for a 75 ° swept, (tclt a wing at -'t[_c = 1.2.
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for a 75 ° swept delta wing at _"_lx = 1.2 and ]_:: {}.25.
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(a) Oo = 5°.

Figure 9. Total-pressure-loss contours during a cycle of harmonic rolling motion for a 75 ° swept delta wing at
M_c: = 1.2, _= 30 °, and k = 0.25.
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(b) ¢o = 35°.

Figure 9. Concluded.
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Figure ] 0. Effects of a11gle of attack on free-to-roll response for a 75 ° swept delta wing at Al,_c --- 1.2.



Figure11.Total-pressure-losscontoursduringa cycleof wingrockfor a 75 ° swept delta wing at M_ = 1.2
and c_ = 30 °.
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Figure 12. I{olling-inonmnt-coefficient transfer function for flap versus reduced frequency fl)r a 75° swept delta
wing at Myc: = 1.2. Pulse amplitude = 1°.
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